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ABsTHACT. Let B be a commutative ring with 1 and T(R)} be its total quotient
ring such thet Nil{R} iz a divided prime ideal of & Then B is called a t-chatned
ring (¢-CR} if for every =,y € R\ Nil(R) cither = |y or y | z. Also, R is called
& ¢-prendo-valualion ring (¢-PVR) if for every z,y € B Nil(R) either = | y or
i | =m for each nonunit m € B. We show that aring Ris a ¢-PVR iff Nil{R) is a
divided prime ideal and B/N:i{R) is a pseudo-valuation domain. Also, we show
that every overring of a guasi-local ring R with maximal ideal M is a ¢ PVR iff
Rlu| is quasilocal for each uw € (M ; M)\ R iff every overring of R is quasilocal
iff every ¢-CR between B and T{R) other than (M : M) ia of the form Rp for
sorme nonmeximal prime ideal P of B. Among other results, we show that if B
is an overring of a ¢-PVR and [ is a proper ideal of B, then there is a ¢-CR O
between B and T R) such that IC £ @, Also, we show that the integral closure
R’ of R in T(R) is the intersection of all the ¢-CRs between H and T{R).

1. INTRODUCTION

We assume throughout that all rings are commutative with 13 0. We begin by
recalling some background material. As in [15], an integral domain R, with quotient
field K, is called a pseudo-valuation domain (PVD) in case each prime ideal P of
R is strongly prime, in the sense that zy € P,z € K,y € K implies that either
€ Pory e P. In (5], Anderson, Dobbs and the author generalized the study of
pseudo-valuation domains to the context of arbitrary rings (possibly with nonzero
zerodivisors). Recall from (5] that a prime ideal P of R is said to be strongly prime
(in R) if aP and bR are comparable (under inclusion) for all a,b € R. A ring R is
called a pseudo-valuation ring (PVR) if each prime ideal of R is strongly prime. A
PVR is necessarily quasilocal [5, Lemma 1(b)|; a chained ring is a PVR [5, Corollary
4]; and an integral domain is a PVR if and only if it is a PVD (cf. [1, Propoesition
3.1], [2, Proposition 4.2], and [6, Proposition 3]). Recall from [7] and [13] that a
prime ideal P of R is called divided if it is comparable (under inclusion) to every
ideal of R. A ring R is called a divided ring if every prime ideal of R is divided.

In [8], the author gave another generalization of PVDs to the context of arbitrary
rings (possibly with nonzero zerodivisors). As in [8], for a ring R with total quotient
ring T(R) such that N#(R) is a divided prime ideal of R, let ¢ : T(R) — K :=
Rygry such that ¢(a/b) = a/b for every a € R and every b € R\ Z(R). Then
¢ is a ring homomorphism from T(R) into K, and ¢ restricted to R is also a ring
homomeorphism from R into K given by ¢(z) = /1 for every £ € R. ‘A prime ideal
@ of ¢(R) is called a K-strongly prime ideal if 2y € @, = € K,y € K implies that
either z € Q or y € (. If each prime ideal of ¢(R) is K-strongly prime, then ¢(R)
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is called & K-pseudo-valuation ring (K-PVR). A prime ideal P of R is called a ¢-
strongly prime ideal if ¢(P) is a K-strongly prime ideal of ¢{R). If each prime ideal
of I is ¢-strongly prime, then R is called a ¢-pseudo-valuation ring (¢ — PV R). For
an equivalent characterization of a ¢-PVR, see Proposition 1.1(3). It was shown in
[9, Theorem 2.6] that for each n = 0 there is a ¢-PVR of Krull dimension n that is
not a PVR. Also, recall from [10], that a ring R is called a ¢-chained ring (¢- CR)
if Nil(R) is a divided prime ideal of R and for every = € Ryq(r) \ #(R), we have
z~! € ¢(R). For an equivalent characterization of a ¢-CR, see Lemma 3.9. A -CR
is a divided ring [10, Corollary 3.3(2)], and hence is quasilocal. It was shown in [10,
Theorem 2.7] that for each n = 0 there is a ¢-CR of Krull dimension n that is not
a chained ring.

In this paper, we show that a quasilocal ring R with maximal ideal M is a #+PVR
iff Rlu) is quasilocal for each u € (M : M)\ R iff every overring of R s quasilocal
iff every overring contained in (M : M) is quasilocal iff each ¢-CR between R and
T(R) other than (M : M) is of the form Rp for some nonmaximal prime ideal P
of R. Among other results, we show that if B is an overring of a ¢-PVR and I is &
proper ideal of B, then there is a ¢-CR C between B and T'(R) such that IB -1
Also, we show that the integral closure of R in T(R) is the intersection of all the
#-CRs between R and T'(R).

The following notations will be used throughout. Let R be a ring. Then T(R)
denotes the total quotient ring of R, Nil(R) denotes the set of nilpotent elements of

R, and Z(R) denotes the set of zerodivisors of R. If I'is an ideal of R, then Rad(I)
denotes the radical ideal of I{inf).

We summarize some basic properties of PVRs and ¢-PVRs in the following propo-
sition.

PROPOSITION 1.1. 1. A PVR is a divided ring [5, Lemma 1], and hence is

guasilocal.

9. A -PVR is a divided ring [8, Proposition 4], end hence is quasilocal.

3. An integral domain is a PVRiff itisa¢-PVR iff it is o PVD( (1, Proposition
3.1, [2, Proposition 4.2], [6, Proposition 3}, and (8],

4. A ring R is a PVR if and only if for every a,b € R, eithera | bin R orb|ac
in R for each nonunit ¢ in R [5, Theorem 3].

5. A ring R is a ¢-PVR if and only if Nil(R) is o divided prime ideal of R and
for every a,b € R\ Nil(R), eithera|bin R or b| ac in R for every nonunit
¢ € R [8, Corollary 7(2)].

6. If R is a PVR or a ¢-PVR, then Nil(R) and Z(R) are divided prime ideals of
R (18], [8])-

9. DiviDED RINGS AND ¢-PVRS

Definition. A proper ideal I of a ring R is called o divided ideal if I is comparable
(under inclusion) o every principal ideal of R; equivalently, if I is comparable to
every ideal of R. If every prime ideal of R 13 divided, then R is called o divided ring.
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In view of the proof of [9, Proposition 2.1], we see that the result in [9, Proposition
2.1] is still valid if we only assume that the ring D is a divided domain. Hence, we
state the following result without proof,

PROPOSITION 2.1. [9, Proposition 2.1] Let D be a divided domain with momi-
mal ideal M and Krul dimension n, say M = B, 5 Py S ... 5 Py 2 {0} , where
the F;’s are the distinet prime ideals of . Leti,m,d>1suchthat l <i<m <n.
Choose = € D such that Rad((x)) = P.. Let € := P, and J := gt Dy, Then:

L. J is an ideal of D and Rad(J) = P.

2. R = D/J is a divided ring with mazimal ideal M/J, Z(R) = P,/J, and

Nil(R) = Fi/J. Furthermore, w:=z +J € Nil(R) and w® + 0 in R.
3. dim(R) =n—1i.
A. Ifi <m < n, then Nil(R) is properly contained between Z(R) and M/J.

Recall that a prime ideal P of a ring A is called branched if Rad(I) = P for some
primary ideal I # P of A, It is well-known that g prime ideal P of a Priifer domain
D is branched iff Rad(I) = P for some ideal I # P of D. In the following result we
will show that this result is still valid for divided rings.

PROPOSITION 2.2. Let R be a divided ring, end let P be a prime ideal of R

such that P # Nil(R). Then P is branched if and only if Rad(f) = P for some
wdeal I £ P of R,

Proof. Suppose that Rad(I) = P for some ideal I # P of R. Tt is clear that
Rad(IP) C P. Let ¢ € P. Since Rad(I) = P, 2" € I for some n > 1. Hence,
z™! € IP, Thus, P C Rad(IP). Now, we show that [P is a primary ideal
of R. Suppose that =y € IP for some z,y € Rand ¢ & P. Since zy € IP,
TY = 8101 + ... + inpn, where each ix € I and each P €P, 1 <k<n. Since Pis
a divided prime ideal and & P, ;e = giz for some ¢ € P for each pr € P. Thus,
z[y — (1191 + ... +4ng)| = 0. Since Nil(R) is a prime ideal of R and = & Nil(R),
Y= (g + ... +ingn) =w € Nil(R). Since Rad(IP) = P # Nil(R), there is a
d € IP\ Nil(R). Hence, Nil(R) C (d) C IP. Since fygy +... + g, € IP snd
w € Nil(R) CIP, yec IP. Thus, [P is a primary ideal of R. O

In light of the proof of the above proposition, we have the following corollary.

COROLLARY 2.3. Let R be a ring such that Nil(R) is a divided prime ideal
of R, and let P be a divided prime ideal of R such that P £ Nil(R). Then P is
branched if and only if Rad(I) = P for some ideal [ £ P of R.

PROPOSITION 2.4. Let R be a ring such that Nil (R) s a divided prime ideal
of R. Suppose that I is o proper ideal of R such that I contains a nonnilpotent of R
and for some N =1, I™ is a divided ideal af R for eachn > N. Then P = Mpz1d™
t8 a divided prime ideal of R.

Proof. Since Nil(R) is a divided ideal and I contains a nonnilpotent of R, Nil(R)
I™ foreach n > N. Hence, Nil(R) c P. Now, suppose that 2y € P forsomez,y € R
and suppose that = & P, Hence, ¢ & I™ for some m > N. Hence, I™ C (z). Thus,
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for each k = 1 we have 2y € I™+& 1%, Hence, for each k > 1, there is a di € I
such that zy = zd. Thus, z(y —di) = 0 for each k > 1. Since Nil(R) C P and
Nil(R) is a prime ideal of R and z ¢ P, we have y — dy = wy € Nil(R). Hence,
y = dy. +wy € I*. Hence, y € P. Thus, P is a prime ideal of R. Now, we show that
P is divided. Let x g P. Then ¢ & I"™ for some m > N. Hence, P C I™ C (z). O

In view of the above proposition, we have the following corollary.

COROLLARY 2.5. Let R be o ring such that Nil(R) is a divided prime ideal of

R, and let I be a proper ideal of B such that I contains a nonnilpotent of H. Then
the following statements are equivalent:

1. I™ = I™ for some positive integers n # m and I is o divided ideal of R.
9. I is a divided prime idenl of R and I = I°.

In the following result, we give a characterization of ¢-PVRs in terms of divided
ideals.

PROPOSITION 2.6. Let R be a quasilocal ring with mazimal ideal M. Then the
following statements are equivalent:

1. Risa¢-PVR.

2. aM is & divided ideal of R for each a € R\ Nil(R).

Proof. (1)= (2). Let a € R\ Nil(R) and b & aM. If b = ar for some unit r of R,
then b | am for every m € M, Otherwise, a ['b in . Thus, b | am for each m € M
by Proposition 1.1(5). Hence, aM C (b).

(2)= (1). Let w € Nil(R) and a € R\ Nil(R). If a is a unit of R, thena | win R.
Hence, assume that a is a nonunit of R. Since w fa®, aM ¢ (w). Hence, w € aM.
Thus, a | w. Thus, Nil(R) is a divided ideal of R. Hence, Nil(R) is a prime ideal
of R by [3, Proposition 5.1]. Now, let a,b € R\ Nil(R). Then either b € aM or
aM ¢ (b). Hence, either a | bor b | am for each m € M. Thus, R is a ¢-PVR by
Proposition 1.1(3). O

The following result follows directly from the definition of strongly prime ideal
as in [5] and the fact that a quasilocal ring with maximal ideal M is a PVR if and
only if M is strongly prime [5, Theorem 2|.

PROPOSITION 2.7. For a quasilocal ring R with mazimal ideal M, the following
staterments are equivalent:

1. R4s a PVR.

9. aM is a divided ideal for each a € M.

An element d in a ring R is called a proper divisor of s € R if 8 = dm for some
nonunit m € R. The proof of the following result is very similar to that in [11,
Proposition 4], but here we make use of the above proposition.

PROPOSITION 2.8. A ring R i5 a ¢-PVR if and only if Nil(R) is o divided
prime ideal of R and for every a,b € R\ Nil(R), either b| a'in R or d|bin R for
each proper divisor d of a.
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Proof. Suppose that R is a ¢-PVR with maximal ideal M. Then Nil(R) is a divided
prime ideal of R by, Proposition 1.1(6). Let a,b € R\ Nil(R), and suppose that
b Ya in R. Let d be a proper divisor of a. Since Nil(R) is a divided ideal of B
and b [ a, we conclude that d @ Nil(R). Thus, since dM is a divided ideal by
Proposition 2.6 and b [a in R, b € dM. Conversely, suppose that b fa in R for
some a,b € R\ Nil(R). We need to show that a | bm for each nonunit m € R.
Suppose that a [ bm for some nonunit m € R. Since b is a proper divisor of bm,
b | a which is a contradiction. Hence, a | bm for each nonunit m € R. Thus, Risa
@-PVR. by Proposition 1.1(5). O

In the following result, we make a connection between ¢-PVR’s and PVR's.

PROPOSITION 2.9. A ring R is a ¢-PVR if and only if Nil(R) is a divided
prime ideal of R and R/Nil(R) is a PVR.

Proof. Suppose that R is a ¢-PVR. Then Nil(R) is a divided prime ideal of R by
Propesition 1.1(6). By applying Propesition 1.1(4) to the ring R/Nil(R), one can
conclude that R/Nil(R) is a PVR. Conversely, suppose that Nil(R) is a divided
prime ideal of R and R/Nil(R) is a PVR. Let a,6 € R\ Nil(R) and ¢ be a nonunit
of R. Then it is easy to see that ¢+ Nil(R) is a nonunit of R/Nil(R). Hence,
by Proposition 1.1(4) either a -+ Nil(R) | b+ Nil(R) in R/Nil(R) or b+ Nil(R) |
ac + Nil(R) in R/Nil(R). Suppose that a + Nil(R) | b+ Nil(R) in R/Nil(R).
Then b = ak + w in R for some w € Nil(R) and k € R. Since Nil(R) is a divided
prime ideal of R and a € Nil(R), a | w. Thus, a | b in R. Now, assume that
b+ Nil(R) | ac+ Nil(R) in R/Nil(R). Then by an argument similar to the one just
given we conclude that & | ac in R. Thus, Ris a ¢-PVR by Proposition 1.1(5). 0O

3. ¢-PVRS anp ¢-ChHs

Let VD denote a valuation domain and ('R denote a chained ring. We then have
the following implications, none of which are reversible.
VD= PVD= PVR=¢—- PVR
AND
VD= CR=¢—-CR=¢— PVR.
We start with the following lemma.

LEMMA 3.1. Let R be a¢p-PVR, and let P be a prime ideal of R. Thenz P C P
foreachz € T(R)\ R.

Proof. Let ¢ = a/b € T(R)\ R for some o € R and for some b € R\ Z(R).
Since b ) @ in R and Z(R) is a divided prime ideal by Proposition 1.1(6), we
conclude that a € R\ Z(R). Hence, z7! = bfa € T(R). Now, let p € P. Then
z(z~'p) = p € P. Hence, ¢(zz~'p) = $(@)d(z~"p) = ¢(p) € ¢(P). Since $(P)
is a K-strongly prime ideal of ¢(R) and by [8, Proposition 3(3)] ¢(x) £ #(P), we
mnclurip that ¢(z~'p) € #(P). Thus, ¢(z~'p) = ¢(g) for some ¢ € P. Hence,

z7p — g € Ker(¢). Since g € F Ker(d) C Nil(R) by [8, Propesition 2(1)], and
Nil(R) C P, we conclude that z™1p € P.
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PROPOSITION 3.2, Let Rbe a ¢-PVRandz €T (R)\ R be integral over R.
Then there is a minimal monic polynomial f(z) € Rlz| such that f(z) =0 and all
nonzero coefficients of f(z) are units in R. Furthermore, if g(z) is a minimal monic
polynomial in Riz| such that glz) =0, then g(0) is a unit in R.

Proof. Let g(z) be a minimal monic polynomial in R[z) such that g(z) = 0. Suppose
that ag, the constant term of g(z), is & nonunit of R. Since z € T(R) \ R is integral
over B, z~1 & R. Hence, by Lemma 3.1, z~lag = m is a nonunit of R. Thus,
mz — ag. Hence, we can replace the constant term ag in g(z) with mz. Thus,
we may factor x from all terms of g(z) and get a monic polynomial H(z) of less
degree than g(z) such that H(z) = 0, a contradiction. Hence, ag is a unit in R
Now, assume that cra® is a term in g(z) such that ¢ is a nonunit of B. Since z5 is
integral over R, 7% ¢ R. Hence, by Lemma 3.1, opz® = 5 is & nonunit of R. Thus,
we may replace the term cxz® in g(z) with s. Since s is a nonunit of R and ag is &
unit in R and R is quasilocal, 4 ap is & unit in R. Continuing in this manner, we
get & minimal monic polynomial f(z) such that f (z) =0 and all nonzero coefficients

of f(x) are units in R. The remaining part of the Propesition follows directly from
the first part of our proof. &

It is well-known ([16],[5],(8], [11]) that the integral closure of a PVR is & PVR. In
view of the above result, one can give an alternative proof of this fact. For a ring
R, let R' denotes the integral closure of i in T(R).

PROPQSITION 3.3. Let R be a $-PVR with mazimal ideal M, and let B be an
overring of R such that B C R'. Then B is a ¢-PVR with mazimal ideal M.

Proof. Let o € B\ R. Hence, 21 € R' by Proposition 3.2. Thus, z-'e Rlz| C B
by (18, Theorem 15]. Hence, x is a unit in B. Since 1/s is never integral over R for
any s € M and any z € B \ Risaunitin B, M is the maximal ideal of B. Thus,

by applying Proposition 1.1(5) to the ring B, we conclude that B is a ¢-PVR with
maximal ideal M. a

PROPOSITION 3.4. Let R be o ¢g-PVR with mazimal ideal M, and let B be an
overring of R. Then the following statements are equivalent:

1. B = Rp is a ¢-CR for some nonmazimal prime ideal P of R.

9. IB = B for some proper ideal I of R.

3. 1/3 € B for some nonzerodivisor 8 € M.

Proof. (1)= (2). No comments.

(2)¢> (3). This is clear by [10, Proposition 3.61.

(3)= (1). Suppose that B contains an element of the form 1/s for some nonzero-
divizor s € M. Then by [10, Proposition 3.8| B is a #-CR, and hence is quasilocal.
Thus, let N be the maximal ideal of B, and let P = NMOR. Sinces € P, Pis
4 nonmaximal prime ideal of R. Clearly, Z(R) C P. Hence, Rp C B. Now, let
ze B\ R Ifz ' €R,thenz = 1/d for some d € R\ P. Thus, ¢ € Rp. Thus,
assumme that z~! ¢ R. Hence, zs =m € M by Lemma 3.1, Thus, z = m/s € Rp.
Hence, B C Rp. |
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The following result is a generalization of (10, Theorem 3].

COROLLARY 3.5. Let R be a ¢-PVR with mazimal ideal M, and let B be an

overring of R such that B is a ¢-CR with mazimal ideal N. If P=NNR # M,
then B = Hp.

Proof. Since P # M, B contains an element of the form 1/s for some nonzerodivisor
g € M. Hence, by the above proposition, the proof is complete. O

The proof of the following result is similar to that in [4, Theorem 2.1|. Hence, we
invite the reader to finish the proof.

PROPOSITION 3.6. Let R be a ¢-PVR with mazimal ideal M and u € (M :
M)\ R. Then R} is a ¢-PVR if and only if Rlu] is guosilocal. Furthermore, if

Rlu] is quasilocal for some w € (M : M)\ R, then R[u| i5 a ¢-PVR with mazimal
ideal M.

PROPOSITION 3.7. Let R be a ¢-PVR with mazimal ideal M. If C is an over-

ring of R such that C' does not contain an element of the form 1/s for some nonze-
rodivisor 3 € M, then C C (M : M).

Proof. Let £ € C\ R. By hypothesis, =1 ¢ R. Hence, aM C M by Lemma 3.1.
Thus, £ € (M : M). O

COROLLARY 3.8. Let R be o ¢-PVR with mazimal ideal M. Then every over-
ring of R s a ¢-PVR if and only if Rlu| is quasilocal for each u € (M : M)\ R.

Proof. Suppose that Rlu] is quasilocal for each u € (M : M)\ R. Let C be an overring
of R. If C contains an element of the form 1/s for some nonzerodivisor $ € M, then
C is a ¢-PVR by Proposition 3.4. Hence, assume that € does not contain an
element of the form 1/s for some nonzerodivisor ¢ € M. Hence, C C (M : M) by
Proposition 3.7. Let u € €'\ R. Then R|u| is quasilocal by hypothesis. Hence, by
Proposition 3.6, M is the maximal ideal of R[u]. Thus, ! € R[u] C C. Hence, M
is the maximal ideal of C. Thus, by applying Proposition 1.1(5) to the ring C, we
conclude that C is a ¢-PVR. O

We recall the following result.

LEMMA 3.9. [10, Proposition 2.3] A ring R is a ¢-CR if and only if Nil(R) is a

divided prime ideal of R and for every a,b € R\ Nil(R), eithera|bin Rorb|a
in H.

Recall that an ideal of R is called regular if it contains a nonzerodivisor of R. If
every regular ideal of R is generated by its set of nonzerodivisors, then R is called
a Marot ring. Also, recall that a ring R has few zerodivisors if Z(R) is a finite
union of prime ideals. We have the following result which is a generalization of [10,
Propaosition 6].

PROPOSITION 3.10. Let R be a ¢-PVR. Then :

1. R is a Marot ring.
2. If R # T(R), then T(R) i5 a ¢-CR.



58 AYMAN BADAWT

Proof. (1). Since Z(R) is a prime ideal of R by Proposition 1.1(6), R has few
zerodivisors. Hence, R is a Marot ring by {17, Theorem 7.2).

(2). Since Nil(R) is a divided prime ideal of R, Nil(T(R)) = Nil(R). Now, let
z,y € T(R) \ Nil(R). Then = = a/s and y = b/s for some a,b € R \ Nil(R) and
5 € R\ Z(R). By Lemma 3.9, we need to show that either z | yinT(R)ory|zin
T(R). Ifa|bin R, then x|y in T(R). Hence, assume that @ J'bin R. Since R is a
¢-PVR and R # T(R), b| ad in R for some d € M \ Z(R). Thus, ad = be for some
¢ € R. Thus, a/s = (b/s)(e/d). Thus, y | 2 in T(R). O

REMARK 3.11. Let R be a ¢-PVR with mazimal ideal M such that M contains
a nonzerodivisor of R, and let I be a proper ideal of R. Then, since V = (M : M)

is o @-CR with mazimal ideal M, it is easy to see that there is a @-CR V between
R and T(R) such that IV # V.

The proof of the following result starts exactly as in [18, Theorem 56].

THEOREM 3.12. Let R be a ¢-PVR with mazimal ideal M such that M contains
e nonzerodivisor of R, let C be an overring of R ( R € C € T(R)), and let T be

a proper ideal of C. Then there erists a $-CR B such that C ¢ B C T{R) and
IB £ B.

Proof. Consider all pairs (Ca,l.), where C, is a ring between C and T(R), and
In # Cyu, I C I,. We partially order the pairs by decreeing inclusion to mean both
Ca 2 Cp and 5 D Ig. Zorn’s Lemma is applicable to yield a maximal pair (B, J).
To show that B is a ¢-CR, by Lemma 3.9, we only need to show that Nil{B) is
a divided prime ideal of B and for every a,b € B eithera | bin Bor b | a in B.
Clearly, /B # B, C € B C T(T"), and Nil(B) = Nil(R) is a divided prime ideal of
B. Let ¢ € T(R) \ R. Since R is a divided ring by Proposition 1.1(2) and z ¢ R,
z = a/b for some nonzerodivisors a,b of R. Hence, z is a unit in T(R). Thus,
JB[z| # Blz| or JB{z~'] # Blz~'| by [18, Theorem 55|. Hence, by the maximality
of the pair (B,J), either z € Bor 27! € B. Thus, ifz,y € B\ R, thenz |y in B
ory | z in B. Now, let a,b € R and suppose that o Jb in R. Since R is a ¢-PVR
and M contains a nonzerodivisor of R, b | as for some nonzerodivisor s € M. Thus,
as = be for some ¢ € M. Suppose that ¢ € Z(R). Since Z(R) is a divided prime
ideal of R and s € Z(R), s | ¢in R. Hence, b | a in R and therefore b | a in B. Now,
assume that ¢ & Z(R). If 5 | ¢ in R, then, once again, b | a in R and we are done.
Thus, suppose that s fcin R. Then z = ¢fs € T(R) \ R, and hence either ¢z € B
or =1 € B as we have shown earlier in the proof. Thus, either b | ain B ora | b
in B. Finally, suppose that a € R and b € BY R. Write b = ¢/d for some ¢ € R
and d € R\ Z(R). Since Z(R) is a divided ideal of R by Proposition 1.1(6) and
b=c¢/d € R, we conclude that ¢ € R\ Z(R). If a € Z(R), then ¢| a in R and hence
b| ain B. Thus, assume that a € Z(R). Let z = ad/c. If 2 € R, then b| a in B.
Otherwise, x € T(R)\ R. Hence, either = € B or ™! € B as we have shown earlier
in the proof. Thus, either b | a in Bora|bin B. Hence, B is a ¢-CR by Lemma
3.9. 0

PROPOSITION 3.13. Let R be a ¢-PVR and B be an overring of R such that
B is a ¢-CR. Then R' C B.



ON DIVIDED RINGS AND ¢-PSEUDQ-VALUATION RINGS i 53

Proof. Deny. Then there is an 2 € R'\ B. Hence, since B' is a $-PVR with maximal
ideal M by Proposition 3.3, 2 isa unit in R'. Sincez ¢ Band Bisa ¢-CR,z"1 e B,
Since x € R/, z € Rlz~!] by [18, Theorem 15|. Hence, « & Rlz=Y C B, which is a
contradiction. Thus, R’ C B, O

THEOREM 3.14. Let R be a ¢-PVR with mazimal ideal M such that M containsg
a nonzerodivisor. Then R' is the intersection of all the ¢-CRs between B and T(R)

Proof. By Proposition 3.13, R' is contained in the intersection of all the #-CRs
between Rand T(R). Let y € the intersection of all the ¢-CRs between R and T(R);
we must show that y € R’ Suppose not. By [18, Theorem 15], y € C = Rly™Y.
Let I =y~'C. Then I is a proper ideal of C. By Theorem 3.12 there is a ¢-CR B

between C and T(R) such that IB # B. But by hypothesis ¥ € B, and we have our
contradiction. O

The following result is a generalization of [12, Theorem 8|.

THEOREM 3.15. Let R be a ¢-PVR with mazimal ideal M. Then every overring
of R is a $-PVR if and only if every ¢-CR between R and T(R} other than (M : M)
15 of the form Rp for some nonmazimal prime ideal P of R.

Proof. If T(R) = R, then there is nothing to prove. Hence, assume that M contains
a nonzerodivisor of R. Suppose that every overring of R is a ¢-PVR. Then ' — (M :
M) by [8, Proposition 15(1)]. Let C be an overring of R such that C # (M : M)
and C is a ¢-CR. Since every overring of R not containing an element of the form
L/ for some nonzerodivisor s of R is contained in B’ — (M : M) by Proposition
3.7 and hence is a ¢-PVR with maximal ideal M by Proposition 3.3 and (M : M)
is the only ¢-CR between R and T(R) that has maximal ideal M by (10, Lemma
3.1(1), C ¢ R' = (M : M). Thus; € must contain an element of the form 1/s for
some nonzerodivisor s € M. Hence, ¢ = Rp for some nonmaximal prime ideal P
of R by Proposition 3.4.

Conversely, suppose that every ¢-CR between R and T(R) other than (M : M)
is of the form Rp for some nonmaximal prime ideal P of R. Then (M : M) is
contained in every ¢-CR between R and T(R). Hence, (M : M ) is the intersection
of all the ¢-CRs between R and T(R). Thus, by Theorem 3.14, R' = (M : M).
Hence, every overring of R is a ¢-PVR by (8, Proposition 15(1)]. &

In light of [8, Proposition 15(1)] and the above Theorem, we have the following
result.

COROLLARY 3.16. Let B be g @-PVR with marimal ideal M such that B’ #
(M : M). Then there is o ¢-CR that is properly contained between R' and (M : M),

Combining [8, Propaesition 15(1)], Proposition 3.3, Proposition 3.4, Proposition
3.8, and Theorem 3.14, we arrive at the following result that is a generalization of
([4, Corollary 2.2], [12, Theorem 8|, and [11, Corollary 17]).

COROLLARY 3.17. Let R be a ¢-PVR with mosimal ideal M. Then the follow-
ing statements are equivalent:
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Every overring of R is a ¢-PVR.

Rlu| is ¢ ¢-PVR for each u€ (M : M)\ R.

Rlu| is quasilocal for each u € (M : M)\ R.

If B is an overring of R and B C (M : M), then B is a ¢-PVR with mazimal
ideal M,

If B is an overring of R and B C (M : M), then B is quasilocal.

Every overring of R is quasilocal.

Every ¢-CR between R and T{R) other than (M : M) is of the form Rp for
some nonmazimal prime ideal P of H.

8 R =(M:M).

Lol = o

e
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