On Divided Rings and ϕ -Pseudo-Valuation Rings

Ayman Badawi
Department of Mathematics
Birzeit University, Box 14, Birzeit, West Bank, Palestine
E-Mail: abring@birzeit.edu

Communicated by David F. Anderson

1. Introduction

We assume throughout that all rings are commutative with $1 \neq 0$. We begin by recalling some background material. As in [15], an integral domain R, with quotient field K, is called a pseudo-valuation domain (PVD) in case each prime ideal P of R is strongly prime, in the sense that $xy \in P, x \in K, y \in K$ implies that either $x \in P$ or $y \in P$. In [5], Anderson, Dobbs and the author generalized the study of pseudo-valuation domains to the context of arbitrary rings (possibly with nonzero zerodivisors). Recall from [5] that a prime ideal P of R is said to be strongly prime (in R) if aP and bR are comparable (under inclusion) for all $a, b \in R$. A ring R is called a pseudo-valuation ring (PVR) if each prime ideal of R is strongly prime. A PVR is necessarily quasilocal [5, Lemma 1(b)]; a chained ring is a PVR [5, Corollary 4]; and an integral domain is a PVR if and only if it is a PVD (cf. [1, Proposition 3.1], [2, Proposition 4.2], and [6, Proposition 3]). Recall from [7] and [13] that a prime ideal P of R is called divided if it is comparable (under inclusion) to every ideal of R. A ring R is called a divided ring if every prime ideal of R is divided.

In [8], the author gave another generalization of PVDs to the context of arbitrary rings (possibly with nonzero zerodivisors). As in [8], for a ring R with total quotient ring T(R) such that Nil(R) is a divided prime ideal of R, let $\phi: T(R) \longrightarrow K:=R_{Nil(R)}$ such that $\phi(a/b)=a/b$ for every $a\in R$ and every $b\in R\setminus Z(R)$. Then ϕ is a ring homomorphism from T(R) into K, and ϕ restricted to R is also a ring homomorphism from R into K given by $\phi(x)=x/1$ for every $x\in R$. A prime ideal Q of $\phi(R)$ is called a K-strongly prime ideal if $xy\in Q$, $x\in K$, $y\in K$ implies that either $x\in Q$ or $y\in Q$. If each prime ideal of $\phi(R)$ is K-strongly prime, then $\phi(R)$

is called a K-pseudo-valuation ring (K-PVR). A prime ideal P of R is called a ϕ -strongly prime ideal if $\phi(P)$ is a K-strongly prime ideal of $\phi(R)$. If each prime ideal of R is ϕ -strongly prime, then R is called a ϕ -pseudo-valuation ring (ϕ -PVR). For an equivalent characterization of a ϕ -PVR, see Proposition 1.1(5). It was shown in [9, Theorem 2.6] that for each $n \geq 0$ there is a ϕ -PVR of Krull dimension n that is not a PVR. Also, recall from [10], that a ring R is called a ϕ -chained ring (ϕ -CR) if Nil(R) is a divided prime ideal of R and for every $x \in R_{Nil(R)} \setminus \phi(R)$, we have $x^{-1} \in \phi(R)$. For an equivalent characterization of a ϕ -CR, see Lemma 3.9. A ϕ -CR is a divided ring [10, Corollary 3.3(2)], and hence is quasilocal. It was shown in [10, Theorem 2.7] that for each $n \geq 0$ there is a ϕ -CR of Krull dimension n that is not a chained ring.

In this paper, we show that a quasilocal ring R with maximal ideal M is a ϕ -PVR iff R[u] is quasilocal for each $u \in (M:M) \setminus R$ iff every overring of R is quasilocal iff every overring contained in (M:M) is quasilocal iff each ϕ -CR between R and T(R) other than (M:M) is of the form R_P for some nonmaximal prime ideal P of R. Among other results, we show that if B is an overring of a ϕ -PVR and I is a proper ideal of B, then there is a ϕ -CR C between B and T(R) such that $IB \neq B$. Also, we show that the integral closure of R in T(R) is the intersection of all the

 ϕ -CRs between R and T(R).

The following notations will be used throughout. Let R be a ring. Then T(R) denotes the total quotient ring of R, Nil(R) denotes the set of nilpotent elements of R, and Z(R) denotes the set of zerodivisors of R. If I is an ideal of R, then Rad(I) denotes the radical ideal of I(inR).

We summarize some basic properties of PVRs and ϕ -PVRs in the following proposition.

PROPOSITION 1.1. 1. A PVR is a divided ring [5, Lemma 1], and hence is quasilocal.

2. A ϕ -PVR is a divided ring [8, Proposition 4], and hence is quasilocal.

An integral domain is a PVR iff it is a φ-PVR iff it is a PVD([1, Proposition 3.1], [2, Proposition 4.2], [6, Proposition 3], and [8]).

4. A ring R is a PVR if and only if for every $a, b \in R$, either $a \mid b$ in R or $b \mid ac$

in R for each nonunit c in R [5, Theorem 5].

 A ring R is a φ-PVR if and only if Nil(R) is a divided prime ideal of R and for every a, b ∈ R \ Nil(R), either a | b in R or b | ac in R for every nonunit c∈ R [8, Corollary 7(2)].

If R is a PVR or a φ-PVR, then Nil(R) and Z(R) are divided prime ideals of

R ([5], [8]).

2. DIVIDED RINGS AND φ-PVRS

Definition. A proper ideal I of a ring R is called a divided ideal if I is comparable (under inclusion) to every principal ideal of R; equivalently, if I is comparable to every ideal of R. If every prime ideal of R is divided, then R is called a divided ring.

In view of the proof of [9, Proposition 2.1], we see that the result in [9, Proposition 2.1] is still valid if we only assume that the ring D is a divided domain. Hence, we state the following result without proof.

PROPOSITION 2.1. [9, Proposition 2.1] Let D be a divided domain with maximal ideal M and Krull dimension n, say $M = P_n \supset P_{n-1} \supset \ldots \supset P_1 \supset \{0\}$, where the P_i 's are the distinct prime ideals of D. Let $i, m, d \ge 1$ such that $1 \le i \le m \le n$. Choose $x \in D$ such that $Rad((x)) = P_i$. Let $Q := P_m$ and $J := x^{d+1}D_Q$. Then:

- J is an ideal of D and Rad(J) = P_i.
- 2. R := D/J is a divided ring with maximal ideal M/J, $Z(R) = P_m/J$, and $Nil(R) = P_i/J$. Furthermore, $w := x + J \in Nil(R)$ and $w^d \neq 0$ in R.
- 3. dim(R) = n i.
- If i < m < n, then Nil(R) is properly contained between Z(R) and M/J.

Recall that a prime ideal P of a ring A is called branched if Rad(I) = P for some primary ideal $I \neq P$ of A. It is well-known that a prime ideal P of a Prüfer domain D is branched iff Rad(I) = P for some ideal $I \neq P$ of D. In the following result we will show that this result is still valid for divided rings.

PROPOSITION 2.2. Let R be a divided ring, and let P be a prime ideal of R such that $P \neq Nil(R)$. Then P is branched if and only if Rad(I) = P for some ideal $I \neq P$ of R.

Proof. Suppose that Rad(I) = P for some ideal $I \neq P$ of R. It is clear that $Rad(IP) \subset P$. Let $x \in P$. Since Rad(I) = P, $x^n \in I$ for some $n \geq 1$. Hence, $x^{n+1} \in IP$. Thus, $P \subset Rad(IP)$. Now, we show that IP is a primary ideal of R. Suppose that $xy \in IP$ for some $x,y \in R$ and $x \notin P$. Since $xy \in IP$, $xy = i_1p_1 + \ldots + i_np_n$, where each $i_k \in I$ and each $p_k \in P$, $1 \leq k \leq n$. Since P is a divided prime ideal and $x \notin P$, $p_k = q_k x$ for some $q_k \in P$ for each $p_k \in P$. Thus, $x[y - (i_1q_1 + \ldots + i_nq_n)] = 0$. Since Nil(R) is a prime ideal of R and $x \notin Nil(R)$, $y - (i_1q_1 + \ldots + i_nq_n) = w \in Nil(R)$. Since $Rad(IP) = P \neq Nil(R)$, there is a $d \in IP \setminus Nil(R)$. Hence, $Nil(R) \subset (d) \subset IP$. Since $i_1q_1 + \ldots + i_nq_n \in IP$ and $w \in Nil(R) \subset IP$, $y \in IP$. Thus, IP is a primary ideal of R.

In light of the proof of the above proposition, we have the following corollary.

COROLLARY 2.3. Let R be a ring such that Nil(R) is a divided prime ideal of R, and let P be a divided prime ideal of R such that $P \neq Nil(R)$. Then P is branched if and only if Rad(I) = P for some ideal $I \neq P$ of R.

PROPOSITION 2.4. Let R be a ring such that Nil(R) is a divided prime ideal of R. Suppose that I is a proper ideal of R such that I contains a nonnilpotent of R and for some $N \ge 1$, I^n is a divided ideal of R for each $n \ge N$. Then $P = \bigcap_{n \ge 1} I^n$ is a divided prime ideal of R.

Proof. Since Nil(R) is a divided ideal and I contains a nonnilpotent of R, $Nil(R) \subset I^m$ for each $n \geq N$. Hence, $Nil(R) \subset P$. Now, suppose that $xy \in P$ for some $x, y \in R$ and suppose that $x \notin P$. Hence, $x \notin I^m$ for some $m \geq N$. Hence, $I^m \subset (x)$. Thus,

for each $k \ge 1$ we have $xy \in I^{m+k} \subset xI^k$. Hence, for each $k \ge 1$, there is a $d_k \in I^k$ such that $xy = xd_k$. Thus, $x(y - d_k) = 0$ for each $k \ge 1$. Since $Nil(R) \subset P$ and Nil(R) is a prime ideal of R and $x \notin P$, we have $y - d_k = w_k \in Nil(R)$. Hence, $y=d_k+w_k\in I^k$. Hence, $y\in P$. Thus, P is a prime ideal of R. Now, we show that P is divided. Let $x \notin P$. Then $x \notin I^m$ for some $m \geq N$. Hence, $P \subset I^m \subset (x)$. \square

In view of the above proposition, we have the following corollary.

COROLLARY 2.5. Let R be a ring such that Nil(R) is a divided prime ideal of R, and let I be a proper ideal of R such that I contains a nonnilpotent of R. Then the following statements are equivalent:

- Iⁿ = I^m for some positive integers n≠ m and Iⁿ is a divided ideal of R.
- 2. I is a divided prime ideal of R and $I = I^2$.

In the following result, we give a characterization of ϕ -PVRs in terms of divided ideals.

PROPOSITION 2.6. Let R be a quasilocal ring with maximal ideal M. Then the following statements are equivalent:

R is a φ-PVR.

aM is a divided ideal of R for each a ∈ R \ Nil(R).

Proof. (1) \Rightarrow (2). Let $a \in R \setminus Nil(R)$ and $b \notin aM$. If b = ar for some unit r of R, then $b \mid am$ for every $m \in M$. Otherwise, $a \nmid b$ in R. Thus, $b \mid am$ for each $m \in M$

by Proposition 1.1(5). Hence, $aM \subset (b)$.

(2) \Rightarrow (1). Let $w \in Nil(R)$ and $a \in R \setminus Nil(R)$. If a is a unit of R, then $a \mid w$ in R. Hence, assume that a is a nonunit of R. Since $w \not\mid a^2$, $aM \not\subset (w)$. Hence, $w \in aM$. Thus, $a \mid w$. Thus, Nil(R) is a divided ideal of R. Hence, Nil(R) is a prime ideal of R by [3, Proposition 5.1]. Now, let $a,b \in R \setminus Nil(R)$. Then either $b \in aM$ or $aM \subset (b)$. Hence, either $a \mid b$ or $b \mid am$ for each $m \in M$. Thus, R is a ϕ -PVR by Proposition 1.1(5).

The following result follows directly from the definition of strongly prime ideal as in [5] and the fact that a quasilocal ring with maximal ideal M is a PVR if and only if M is strongly prime [5, Theorem 2].

PROPOSITION 2.7. For a quasilocal ring R with maximal ideal M, the following statements are equivalent:

R is a PVR.

aM is a divided ideal for each a ∈ M.

An element d in a ring R is called a proper divisor of $s \in R$ if s = dm for some nonunit $m \in R$. The proof of the following result is very similar to that in [11, Proposition 4], but here we make use of the above proposition.

PROPOSITION 2.8. A ring R is a ϕ -PVR if and only if Nil(R) is a divided prime ideal of R and for every $a,b \in R \setminus Nil(R)$, either $b \mid a$ in R or $d \mid b$ in R for each proper divisor d of a.

Proof. Suppose that R is a ϕ -PVR with maximal ideal M. Then Nil(R) is a divided prime ideal of R by Proposition 1.1(6). Let $a,b\in R\setminus Nil(R)$, and suppose that $b\not\mid a$ in R. Let d be a proper divisor of a. Since Nil(R) is a divided ideal of R and $b\not\mid a$, we conclude that $d\not\in Nil(R)$. Thus, since dM is a divided ideal by Proposition 2.6 and $b\not\mid a$ in R, $b\in dM$. Conversely, suppose that $b\not\mid a$ in R for some $a,b\in R\setminus Nil(R)$. We need to show that $a\mid bm$ for each nonunit $m\in R$. Suppose that $a\not\mid bm$ for some nonunit $m\in R$. Since b is a proper divisor of bm, $b\mid a$ which is a contradiction. Hence, $a\mid bm$ for each nonunit $m\in R$. Thus, R is a ϕ -PVR by Proposition 1.1(5).

In the following result, we make a connection between ϕ -PVR's and PVR's.

PROPOSITION 2.9. A ring R is a ϕ -PVR if and only if Nil(R) is a divided prime ideal of R and R/Nil(R) is a PVR.

Proof. Suppose that R is a ϕ -PVR. Then Nil(R) is a divided prime ideal of R by Proposition 1.1(6). By applying Proposition 1.1(4) to the ring R/Nil(R), one can conclude that R/Nil(R) is a PVR. Conversely, suppose that Nil(R) is a divided prime ideal of R and R/Nil(R) is a PVR. Let $a,b\in R\setminus Nil(R)$ and c be a nonunit of R. Then it is easy to see that c+Nil(R) is a nonunit of R/Nil(R). Hence, by Proposition 1.1(4) either $a+Nil(R)\mid b+Nil(R)$ in R/Nil(R) or $b+Nil(R)\mid ac+Nil(R)$ in R/Nil(R). Suppose that $a+Nil(R)\mid b+Nil(R)$ in R/Nil(R). Then b=ak+w in R for some $w\in Nil(R)$ and $k\in R$. Since Nil(R) is a divided prime ideal of R and $a\not\in Nil(R)$, $a\mid w$. Thus, $a\mid b$ in R. Now, assume that $b+Nil(R)\mid ac+Nil(R)$ in R/Nil(R). Then by an argument similar to the one just given we conclude that $b\mid ac$ in R. Thus, R is a ϕ -PVR by Proposition 1.1(5). \square

3. ϕ -PVRS and ϕ -CRs

Let VD denote a valuation domain and CR denote a chained ring. We then have the following implications, none of which are reversible.

$$VD \Rightarrow PVD \Rightarrow PVR \Rightarrow \phi - PVR$$

AND
 $VD \Rightarrow CR \Rightarrow \phi - CR \Rightarrow \phi - PVR$.

We start with the following lemma.

LEMMA 3.1. Let R be a ϕ -PVR, and let P be a prime ideal of R. Then $x^{-1}P \subset P$ for each $x \in T(R) \setminus R$.

Proof. Let $x=a/b\in T(R)\setminus R$ for some $a\in R$ and for some $b\in R\setminus Z(R)$. Since $b\not\mid a$ in R and Z(R) is a divided prime ideal by Proposition 1.1(6), we conclude that $a\in R\setminus Z(R)$. Hence, $x^{-1}=b/a\in T(R)$. Now, let $p\in P$. Then $x(x^{-1}p)=p\in P$. Hence, $\phi(xx^{-1}p)=\phi(x)\phi(x^{-1}p)=\phi(p)\in \phi(P)$. Since $\phi(P)$ is a K-strongly prime ideal of $\phi(R)$ and by [8, Proposition 3(3)] $\phi(x)\not\in \phi(P)$, we conclude that $\phi(x^{-1}p)\in \phi(P)$. Thus, $\phi(x^{-1}p)=\phi(q)$ for some $q\in P$. Hence, $x^{-1}p-q\in Ker(\phi)$. Since $q\in P$, $Ker(\phi)\subset Nil(R)$ by [8, Proposition 2(1)], and $Nil(R)\subset P$, we conclude that $x^{-1}p\in P$.

PROPOSITION 3.2. Let R be a ϕ -PVR and $z \in T(R) \setminus R$ be integral over R. Then there is a minimal monic polynomial $f(x) \in R[x]$ such that f(z) = 0 and all nonzero coefficients of f(x) are units in R. Furthermore, if g(x) is a minimal monic polynomial in R[x] such that g(z) = 0, then g(0) is a unit in R.

Proof. Let g(x) be a minimal monic polynomial in R[x] such that g(z) = 0. Suppose that a_0 , the constant term of g(x), is a nonunit of R. Since $z \in T(R) \setminus R$ is integral over R, $z^{-1} \notin R$. Hence, by Lemma 3.1, $z^{-1}a_0 = m$ is a nonunit of R. Thus, $mz = a_0$. Hence, we can replace the constant term a_0 in g(x) with mx. Thus, we may factor x from all terms of g(x) and get a monic polynomial H(x) of less degree than g(x) such that H(z) = 0, a contradiction. Hence, a_0 is a unit in R. Now, assume that $c_k x^k$ is a term in g(x) such that c_k is a nonunit of R. Since z^k is integral over R, $z^{-k} \notin R$. Hence, by Lemma 3.1, $c_k z^k = s$ is a nonunit of R. Thus, we may replace the term $c_k x^k$ in g(x) with s. Since s is a nonunit of R and a_0 is a unit in R and R is quasilocal, $s + a_0$ is a unit in R. Continuing in this manner, we get a minimal monic polynomial f(x) such that f(z) = 0 and all nonzero coefficients of f(x) are units in R. The remaining part of the Proposition follows directly from the first part of our proof.

It is well-known ([16],[5],[8], [11]) that the integral closure of a PVR is a PVR. In view of the above result, one can give an alternative proof of this fact. For a ring R, let R' denotes the integral closure of R in T(R).

PROPOSITION 3.3. Let R be a ϕ -PVR with maximal ideal M, and let B be an overring of R such that $B \subset R'$. Then B is a ϕ -PVR with maximal ideal M.

Proof. Let $x \in B \setminus R$. Hence, $x^{-1} \in R'$ by Proposition 3.2. Thus, $x^{-1} \in R[x] \subset B$ by [18, Theorem 15]. Hence, x is a unit in B. Since 1/s is never integral over R for any $s \in M$ and any $x \in B \setminus R$ is a unit in B, M is the maximal ideal of B. Thus, by applying Proposition 1.1(5) to the ring B, we conclude that B is a ϕ -PVR with maximal ideal M.

PROPOSITION 3.4. Let R be a ϕ -PVR with maximal ideal M, and let B be an overring of R. Then the following statements are equivalent:

- 1. $B = R_P$ is a ϕ -CR for some nonmaximal prime ideal P of R.
- IB = B for some proper ideal I of R.
- 1/s ∈ B for some nonzerodivisor s ∈ M.

Proof. (1) \Rightarrow (2). No comments.

(2)⇔ (3). This is clear by [10, Proposition 3.6].

(3) \Rightarrow (1). Suppose that B contains an element of the form 1/s for some nonzerodivisor $s \in M$. Then by [10, Proposition 3.8] B is a ϕ -CR, and hence is quasilocal. Thus, let N be the maximal ideal of B, and let $P = N \cap R$. Since $s \notin P$, P is a nonmaximal prime ideal of R. Clearly, $Z(R) \subset P$. Hence, $R_P \subset B$. Now, let $x \in B \setminus R$. If $x^{-1} \in R$, then x = 1/d for some $d \in R \setminus P$. Thus, $x \in R_P$. Thus, assume that $x^{-1} \notin R$. Hence, $xs = m \in M$ by Lemma 3.1. Thus, $x = m/s \in R_P$. Hence, $B \subset R_P$.

The following result is a generalization of [10, Theorem 3].

COROLLARY 3.5. Let R be a ϕ -PVR with maximal ideal M, and let B be an overring of R such that B is a ϕ -CR with maximal ideal N. If $P = N \cap R \neq M$, then $B = R_P$.

Proof. Since $P \neq M$, B contains an element of the form 1/s for some nonzerodivisor $s \in M$. Hence, by the above proposition, the proof is complete.

The proof of the following result is similar to that in [4, Theorem 2.1]. Hence, we invite the reader to finish the proof.

PROPOSITION 3.6. Let R be a ϕ -PVR with maximal ideal M and $u \in (M:M) \setminus R$. Then R[u] is a ϕ -PVR if and only if R[u] is quasilocal. Furthermore, if R[u] is quasilocal for some $u \in (M:M) \setminus R$, then R[u] is a ϕ -PVR with maximal ideal M.

PROPOSITION 3.7. Let R be a ϕ -PVR with maximal ideal M. If C is an overring of R such that C does not contain an element of the form 1/s for some nonzerodivisor $s \in M$, then $C \subset (M:M)$.

Proof. Let $x \in C \setminus R$. By hypothesis, $x^{-1} \notin R$. Hence, $xM \subset M$ by Lemma 3.1. Thus, $x \in (M:M)$.

COROLLARY 3.8. Let R be a ϕ -PVR with maximal ideal M. Then every overring of R is a ϕ -PVR if and only if R[u] is quasilocal for each $u \in (M:M) \setminus R$.

Proof. Suppose that R[u] is quasilocal for each $u \in (M:M)\backslash R$. Let C be an overring of R. If C contains an element of the form 1/s for some nonzerodivisor $s \in M$, then C is a ϕ -PVR by Proposition 3.4. Hence, assume that C does not contain an element of the form 1/s for some nonzerodivisor $s \in M$. Hence, $C \subset (M:M)$ by Proposition 3.7. Let $u \in C \backslash R$. Then R[u] is quasilocal by hypothesis. Hence, by Proposition 3.6, M is the maximal ideal of R[u]. Thus, $u^{-1} \in R[u] \subset C$. Hence, M is the maximal ideal of C. Thus, by applying Proposition 1.1(5) to the ring C, we conclude that C is a ϕ -PVR.

We recall the following result.

LEMMA 3.9. [10, Proposition 2.3] A ring R is a ϕ -CR if and only if Nil(R) is a divided prime ideal of R and for every $a, b \in R \setminus Nil(R)$, either $a \mid b$ in R or $b \mid a$ in R.

Recall that an ideal of R is called regular if it contains a nonzerodivisor of R. If every regular ideal of R is generated by its set of nonzerodivisors, then R is called a *Marot ring*. Also, recall that a ring R has few zerodivisors if Z(R) is a finite union of prime ideals. We have the following result which is a generalization of [10, Proposition 6].

PROPOSITION 3.10. Let R be a ϕ -PVR. Then :

- 1. R is a Marot ring.
- 2. If $R \neq T(R)$, then T(R) is a ϕ -CR.

Proof. (1). Since Z(R) is a prime ideal of R by Proposition 1.1(6), R has few zerodivisors. Hence, R is a Marot ring by [17, Theorem 7.2].

(2). Since Nil(R) is a divided prime ideal of R, Nil(T(R)) = Nil(R). Now, let $x, y \in T(R) \setminus Nil(R)$. Then x = a/s and y = b/s for some $a, b \in R \setminus Nil(R)$ and $s \in R \setminus Z(R)$. By Lemma 3.9, we need to show that either $x \mid y$ in T(R) or $y \mid x$ in T(R). If $a \mid b$ in R, then $x \mid y$ in T(R). Hence, assume that $a \not\mid b$ in R. Since R is a ϕ -PVR and $R \neq T(R)$, $b \mid ad$ in R for some $d \in M \setminus Z(R)$. Thus, ad = bc for some $c \in R$. Thus, a/s = (b/s)(c/d). Thus, $y \mid x$ in T(R).

REMARK 3.11. Let R be a ϕ -PVR with maximal ideal M such that M contains a nonzerodivisor of R, and let I be a proper ideal of R. Then, since V=(M:M) is a ϕ -CR with maximal ideal M, it is easy to see that there is a ϕ -CR V between R and T(R) such that $IV \neq V$.

The proof of the following result starts exactly as in [18, Theorem 56].

THEOREM 3.12. Let R be a ϕ -PVR with maximal ideal M such that M contains a nonzerodivisor of R, let C be an overring of R ($R \subset C \subset T(R)$), and let I be a proper ideal of C. Then there exists a ϕ -CR B such that $C \subset B \subset T(R)$ and $IB \neq B$.

Proof. Consider all pairs (C_{α}, I_{α}) , where C_{α} is a ring between C and T(R), and $I_{\alpha} \neq C_{\alpha}$, $I \subset I_{\alpha}$. We partially order the pairs by decreeing inclusion to mean both $C_{\alpha} \supset C_{\beta}$ and $I_{\alpha} \supset I_{\beta}$. Zorn's Lemma is applicable to yield a maximal pair (B, J). To show that B is a ϕ -CR, by Lemma 3.9, we only need to show that Nil(B) is a divided prime ideal of B and for every $a, b \in B$ either $a \mid b$ in B or $b \mid a$ in B. Clearly, $IB \neq B$, $C \subset B \subset T(T)$, and Nil(B) = Nil(R) is a divided prime ideal of B. Let $x \in T(R) \setminus R$. Since R is a divided ring by Proposition 1.1(2) and $x \notin R$. x = a/b for some nonzerodivisors a, b of R. Hence, x is a unit in T(R). Thus, $JB[x] \neq B[x]$ or $JB[x^{-1}] \neq B[x^{-1}]$ by [18, Theorem 55]. Hence, by the maximality of the pair (B, J), either $x \in B$ or $x^{-1} \in B$. Thus, if $x, y \in B \setminus R$, then $x \mid y$ in B or $y \mid x$ in B. Now, let $a, b \in R$ and suppose that $a \nmid b$ in R. Since R is a ϕ -PVR and M contains a nonzerodivisor of R, b | as for some nonzerodivisor $s \in M$. Thus, as = bc for some $c \in M$. Suppose that $c \in Z(R)$. Since Z(R) is a divided prime ideal of R and $s \notin Z(R)$, $s \mid c$ in R. Hence, $b \mid a$ in R and therefore $b \mid a$ in B. Now, assume that $c \notin Z(R)$. If $s \mid c$ in R, then, once again, $b \mid a$ in R and we are done. Thus, suppose that $s \not\mid c$ in R. Then $x = c/s \in T(R) \setminus R$, and hence either $x \in B$ or $x^{-1} \in B$ as we have shown earlier in the proof. Thus, either $b \mid a$ in B or $a \mid b$ in B. Finally, suppose that $a \in R$ and $b \in B \setminus R$. Write b = c/d for some $c \in R$ and $d \in R \setminus Z(R)$. Since Z(R) is a divided ideal of R by Proposition 1.1(6) and $b = c/d \notin R$, we conclude that $c \in R \setminus Z(R)$. If $a \in Z(R)$, then $c \mid a$ in R and hence $b \mid a$ in B. Thus, assume that $a \notin Z(R)$. Let x = ad/c. If $x \in R$, then $b \mid a$ in B. Otherwise, $x \in T(R) \setminus R$. Hence, either $x \in B$ or $x^{-1} \in B$ as we have shown earlier in the proof. Thus, either $b \mid a$ in B or $a \mid b$ in B. Hence, B is a ϕ -CR by Lemma 3.9.

PROPOSITION 3.13. Let R be a ϕ -PVR and B be an overring of R such that B is a ϕ -CR. Then $R' \subset B$.

Proof. Deny. Then there is an $x \in R' \setminus B$. Hence, since R' is a ϕ -PVR with maximal ideal M by Proposition 3.3, x is a unit in R'. Since $x \notin B$ and B is a ϕ -CR, $x^{-1} \in B$. Since $x \in R'$, $x \in R[x^{-1}]$ by [18, Theorem 15]. Hence, $x \in R[x^{-1}] \subset B$, which is a contradiction. Thus, $R' \subset B$.

THEOREM 3.14. Let R be a ϕ -PVR with maximal ideal M such that M contains a nonzerodivisor. Then R' is the intersection of all the ϕ -CRs between R and T(R).

Proof. By Proposition 3.13, R' is contained in the intersection of all the ϕ -CRs between R and T(R). Let $y \in$ the intersection of all the ϕ -CRs between R and T(R); we must show that $y \in R'$. Suppose not. By [18, Theorem 15], $y \notin C = R[y^{-1}]$. Let $I = y^{-1}C$. Then I is a proper ideal of C. By Theorem 3.12 there is a ϕ -CR B between C and T(R) such that $IB \neq B$. But by hypothesis $y \in B$, and we have our contradiction.

The following result is a generalization of [12, Theorem 8].

THEOREM 3.15. Let R be a ϕ -PVR with maximal ideal M. Then every overring of R is a ϕ -PVR if and only if every ϕ -CR between R and T(R) other than (M:M) is of the form R_P for some nonmaximal prime ideal P of R.

Proof. If T(R)=R, then there is nothing to prove. Hence, assume that M contains a nonzerodivisor of R. Suppose that every overring of R is a ϕ -PVR. Then R'=(M:M) by [8], Proposition 15(1)]. Let C be an overring of R such that $C \neq (M:M)$ and C is a ϕ -CR. Since every overring of R not containing an element of the form 1/s for some nonzerodivisor s of R is contained in R'=(M:M) by Proposition 3.7 and hence is a ϕ -PVR with maximal ideal M by Proposition 3.3 and M:M is the only Φ -CR between R and T(R) that has maximal ideal M by [10], Lemma 3.1(1)], $C \not\subset R' = (M:M)$. Thus, C must contain an element of the form 1/s for some nonzerodivisor $s \in M$. Hence, $C = R_P$ for some nonmaximal prime ideal P of R by Proposition 3.4.

Conversely, suppose that every ϕ -CR between R and T(R) other than (M:M) is of the form R_P for some nonmaximal prime ideal P of R. Then (M:M) is contained in every ϕ -CR between R and T(R). Hence, (M:M) is the intersection of all the ϕ -CRs between R and T(R). Thus, by Theorem 3.14, R' = (M:M). Hence, every overring of R is a ϕ -PVR by [8, Proposition 15(1)].

In light of [8, Proposition 15(1)] and the above Theorem, we have the following result.

COROLLARY 3.16. Let R be a ϕ -PVR with maximal ideal M such that $R' \neq (M:M)$. Then there is a ϕ -CR that is properly contained between R' and (M:M).

Combining [8, Proposition 15(1)], Proposition 3.3, Proposition 3.4, Proposition 3.8, and Theorem 3.14, we arrive at the following result that is a generalization of ([4, Corollary 2.2], [12, Theorem 8], and [11, Corollary 17]).

COROLLARY 3.17. Let R be a ϕ -PVR with maximal ideal M. Then the following statements are equivalent:

- 1. Every overring of R is a ϕ -PVR.
- 2. R[u] is a ϕ -PVR for each $u \in (M:M) \setminus R$.
- R[u] is quasilocal for each u ∈ (M: M) \ R.
- If B is an overring of R and B ⊂ (M : M), then B is a φ-PVR with maximal ideal M.
- If B is an overring of R and B ⊂ (M: M), then B is quasilocal.
- Every overring of R is quasilocal.
- Every φ-CR between R and T(R) other than (M: M) is of the form R_P for some nonmaximal prime ideal P of R.
- 8. R' = (M : M).

REFERENCES

- D. F. Anderson, Comparability of ideals and valuation overrings, Houston J. Math. 5(1979), 451-463.
- D. F. Anderson, When the dual of an ideal is a ring, Houston J. Math. 9(1983), 325-332.
- [3] D. F. Anderson and A. Badawi, On root closure in commutative rings, to appear in Arabian Journal for Science and Engineering (AJSE).
- [4] D. F. Anderson, A. Badawi, and D. E. Dobbs, Pseudo-valuation rings II, Boll. Un. Mat. Ital. B(8)3(2000),535-545.
- [5] A. Badawi, D. F. Anderson, and D. E. Dobbs, Pseudo-valuation rings, Lecture Notes Pure Appl. Math., Vol. 185(1997), 57-67, Marcel Dekker, New York/Basel.
- [6] A. Badawi, On domains which have prime ideals that are linearly ordered, Comm. Algebra 23(1995), 4365-4373.
- A. Badawi, On divided commutative rings, Comm. Algebra 27(1999), 1465-1474.
- [8] A. Badawi, On φ-pseudo-valuation rings, Lecture Notes Pure Appl. Math., Vol. 205(1999),101-110, Marcel Dekker, New York/Basel.
- A. Badawi, On φ-pseudo-valuation rings, II, to appear in Houston J. Math.
- [10] A. Badawi, On φ-chained rings and φ-pseudo-valuation rings, to appear in Houston J. Math.
- [11] A. Badawi, Remarks on pseudo-valuation rings, Comm. Algebra 28(2000), 2343-2358.
- [12] A. Badawi, On chained overrings of pseudo-valuation rings, Comm. Algebra 28(2000), 2359-2366.
- [13] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67(1976), 353-363.
- [14] R. W. Gilmer, Multiplicative Ideal Theory, Queens Papers on Pure and Applied Mathematics, No. 12. Queens University Press, Kingston Ontario, 1968.
- [15] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 4(1978), 551-567.
- [16] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, II, Houston J. Math. 4(1978), 199-207.
- [17] J. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York/Basel, 1988.
- [18] I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, 1974.

Received September, 2000. Revised November, 2000.